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Abstract 

Background: Fetal exposure to tobacco increases the risk for many adverse birth outcomes, but whether diet miti-
gates these risks has yet to be explored. Here, we examined whether maternal folate intake (from foods and supple-
ments) during pregnancy modified the association between prenatal exposure to tobacco and with preterm delivery, 
small-for-gestational age (SGA) births, or neonatal adiposity.

Methods: Mother–child pairs (n = 701) from Healthy Start were included in this analysis. Urinary cotinine was meas-
ured at ~ 27 weeks gestation. Diet was assessed using repeated 24-h dietary recalls. Neonatal adiposity (fat mass per-
centage) was measured via air displacement plethysmography. Interaction was assessed by including a product term 
between cotinine (< / ≥ limit of detection [LOD]) and folate (< / ≥  25th percentile [1077 µg/day]) in separate logistic or 
linear regression models, adjusting for maternal age, race, ethnicity, education, pre-pregnancy body mass index, and 
infant sex.

Results: Approximately 26% of women had detectable levels of cotinine. Folate intake was significantly lower among 
women with cotinine ≥ LOD as compared to those with cotinine < LOD (1293 µg/day vs. 1418 µg/day; p = 0.01). Folate 
modified the association between fetal exposure to tobacco with neonatal adiposity (p for interaction = 0.07) and 
SGA (p for interaction = 0.07). Among those with lower folate intake, fetal exposure to tobacco was associated with 
lower neonatal adiposity (mean difference: -2.09%; 95% CI: -3.44, -0.74) and increased SGA risk (OR: 4.99; 95% CI: 1.55, 
16.14). Conversely, among those with higher folate intake, there was no difference in neonatal adiposity (mean differ-
ence: -0.17%; 95% CI: -1.13, 0.79) or SGA risk (OR: 1.15; 95% CI: 0.57, 2.31).

Conclusions: Increased folate intake during pregnancy (from foods and/or supplements) may mitigate the risk of 
fetal growth restriction among those who are unable to quit smoking or cannot avoid secondhand smoke during 
pregnancy.

Keywords: Smoking, Tobacco, Cotinine, Preterm Births, Small-for-gestational age births, Neonatal adiposity, Diet, 
Folate, Healthy start
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Background
Fetal exposure to tobacco (where the mother was an 
active or secondhand smoker) has been consistently 
linked to preterm delivery, [1] small-for-gestational age 
(SGA) at birth, [2, 3] and reduced neonatal adiposity (fat 
mass percentage), [4] followed by over-compensatory 
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postnatal ‘catch up’ growth and metabolic diseases later 
in life. [5, 6].

Despite the steady decline in smoking rates in the 
United States, [7] approximately 17.3% of women of 
reproductive age (18–49  years) and 6.8% of pregnant 
women are active smokers. [8] Furthermore, ~ 35% of 
pregnant women are involuntarily exposed to smoke. [9] 
Therefore, identifying modifiable factors that may miti-
gate the impacts of this exposure is an important public 
health priority.

Of particular interest is dietary folate intake (or its 
synthetic form often taken as a supplement, folic acid). 
Beyond the well-established benefit of preventing neural 
tube defects, [10] evidence has been mounting that folate 
also may protect against various other adverse birth out-
comes. [11] Furthermore, higher overall diet quality dur-
ing pregnancy may lower the risk for preterm births, 
[12] SGA births, [13] and lower neonatal adiposity. [14] 
However, few published studies have examined whether 
maternal folate intake or overall diet quality during preg-
nancy may modify the associations between prenatal 
tobacco exposure and adverse birth outcomes.

To address this gap in knowledge, we leveraged data 
from Healthy Start, a well-characterized, racially and 
ethnically-diverse cohort of pregnant women and their 
children. We hypothesized that the associations between 
prenatal tobacco exposure and SGA births, preterm 
births, and neonatal adiposity would be stronger among 
those with lower folate intake and poorer overall diet 
quality during pregnancy.

Methods
Study design
Data from the Healthy Start cohort were utilized for this 
secondary data analysis. Briefly, Healthy Start began as a 
study to better understand fuel-mediated programming 
of offspring adiposity (NCT02273297)—although in later 
years expanded to explore an array of environmental and 
early life exposures associated with a range of infant and 
childhood outcomes. Study participants were pregnant 
women (≥ 16 years) who were patients at obstetrics clin-
ics at the University of Colorado Hospital (< 24  weeks 
gestation). Exclusion criteria included: multiple gesta-
tion pregnancies; previous stillbirth or preterm birth 
at < 25  weeks gestation; preexisting diabetes; asthma; 
cancer; or psychiatric illness. Women were invited to 
participate in two in-person research visits during preg-
nancy (median: 17 and 27 weeks gestation) and one soon 
after delivery.

Exposure assessment
Urinary cotinine (a metabolite of nicotine and marker of 
tobacco exposure [15]) was measured in a subsample of 

study participants at ~ 27  weeks gestation. Cotinine was 
analyzed in stored urine samples via solid phase com-
petitive ELISA—with a sensitivity of 1 ng/mL (Calbiotech 
Cotinine ELISA CO096D, Calbiotech, El Cajon, Califor-
nia). Following a previous Healthy Start analysis examin-
ing similar exposures, [16] cotinine concentrations were 
categorized as follows: no exposure (< limit of detection 
[LOD]); ~ 0.05 ng/mL), maternal exposure to secondhand 
smoke (cotinine ≥ LOD to 550 ng/mL), and active mater-
nal smoking (≥ 550  ng/mL; an established cut-point for 
active smoking [17]). Very few women were active smok-
ers (~ 6%). Therefore, cotinine was dichotomized as no 
exposure (< LOD; 74%) and any exposure to tobacco 
(≥ LOD; 26%) to maximize power in our interaction 
analyses.

Birth outcomes
Preterm births were defined as births < 37  weeks com-
pleted gestation. SGA status was estimated with sex-, 
race/ethnic-, and parity-specific growth curves based 
on the methods by Zhang and Bowes, [18] and Over-
peck et al. [19] Fat mass and fat-free mass were measured 
within 72  h of delivery using the PEA POD (COSMED, 
Rome, Italy)—an air displacement plethysmography 
method that uses densitometric techniques to estimate 
fat mass from the direct measurement of mass and vol-
ume. [20] Each infant had two measurements taken 
with a third measurement taken if the fat mass differed 
by > 2.0%. The mean of the two closest measurements for 
each visit was utilized for analysis. Neonatal adiposity (fat 
mass percentage) was calculated as a proportion of the 
fat mass divided by total mass. [21].

Covariates
Maternal age was calculated based on index offspring 
delivery date and maternal date of birth. Women self-
reported maternal education and race/ethnicity via 
self-report on questionnaires during the 17-week (first 
research) visit. Maternal pre-pregnancy body mass index 
(BMI) was assessed as pre-pregnancy weight (kg) divided 
by height squared  (m2) (pre-pregnancy weight obtained 
from self-report at first research visit (16.2%) or medi-
cal records (83.7%) and maternal height measured at first 
research visit [22]).

The Healthy Eating Index
Maternal diet was assessed using dietary recalls con-
ducted via the Automated Self-Administered 24-Hour 
Dietary Recall web-based tool during pregnancy, with a 
range of 1–8 dietary recalls completed by each study par-
ticipant (median, 2 recalls). Diet data was processed by 
the Nutrition and Obesity Research Center at University 
of North Carolina at Chapel Hill. Maternal diet quality 
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was ascertained via the Healthy Eating Index (HEI-2010). 
[22] Briefly, the HEI-2010 is a diet quality scoring system 
developed by the US Department of Agriculture, Center 
for Nutrition Policy and Promotion and the National 
Cancer Institute (NCI) that was designed to capture 
adherence of the 2010 Dietary Guidelines for Americans. 
The tool contains 12 components [1] total vegetables, 2) 
greens and beans, 3) fruit, 4) whole fruit, 5) whole grains, 
6) dairy, 7) total protein foods, 8) seafood and plant pro-
teins, 9) fatty acids, 10) sodium, 11) refined grains, and 
12) empty calories) scored per 1000 kcal to give a maxi-
mum score of 100 [22] (alcohol intake was not included 
as all participants had < 13 g per 1000 kcal in each recall 
(the threshold for alcohol caloric intake inclusion [22])) 
and has been found to be a valid and reliable measure 
of diet quality. [23] The HEI-2010 values in our cohort 
ranged from 33–87. We assessed HEI-2010 values as 
both a continuous and dichotomous variable (< 61 [the 
median value]; ≥ 61).

Maternal folate intake
In addition to the dietary recalls, mothers also self-
reported supplement use (prenatal, multivitamin or other 
single nutrient) at each research visit. Folate intake from 
supplements was calculated by querying brand, type, and 
dose. [24] Participants described their supplement use 
within 12  weeks prior to conception (for the first preg-
nancy visit) or since their last visit (for mid-pregnancy 
and delivery visits). [25] Total maternal folate/folic acid 
intake was determined by combining usual daily intake of 
folate/folic acid from dietary sources and supplements. 
While the current estimated average total folate require-
ment for pregnant women (including both dietary and 
supplemental sources) is ~ 520 µg/day, [26] less than 5% of 
our population fell below this range. Therefore, we opted 
to examine folate both continuously and also categorized 
according to the following selected percentile cut-points 
(i.e.  50th (< / ≥ 1384 µg/day),  25th (< / ≥ 1077 µg/day),  10th 
(< / ≥ 872 µg/day), and  5th (< / ≥ 717 µg/day)).

Statistical analysis
A linear regression model was used to examine the main 
effect association between prenatal tobacco exposure 
(no exposure, secondhand smoke exposure, and active 
maternal smoking) and neonatal adiposity (percent fat 
mass). Logistic regression models estimated the main 
effect association between prenatal tobacco exposure 
and categorical outcomes (preterm delivery and SGA 
births). Interaction was assessed by introducing a prod-
uct term between the dichotomized cotinine variable 
(< LOD, ≥ LOD) and continuous or dichotomous diet 
variables in the separate regression models. Directed 
acyclic graphs (DAGS) and previous literature findings 

were used to determine model covariates, which included 
maternal age, education, race and ethnicity, pre-preg-
nancy BMI, and infant sex. An alpha level of 0.05 was 
used to determine statistical significance. As total caloric 
intake is also associated with each of our outcomes, we 
also considered maternal average daily caloric intake 
throughout pregnancy in each of the models as a sensi-
tivity analysis. All statistical analyses were performed 
using  SAS© OnDemand for Academics.

Results
Of the initial cohort of 1410 participants, we excluded 
689 participants with missing cotinine data and 20 with 
missing gestational age measurements. Therefore, 701 
mother–child pairs were included in the preterm birth/
SGA analysis. Of these, 91 infants were missing PEA 
POD measurements at birth. Therefore, 630 mother–
child pairs were included in the neonatal adiposity 
analyses. As previously described, [27] no meaning-
ful differences in maternal or child characteristics were 
detected between the entire cohort and the cotinine sub-
sample of ~ 700 mother–child pairs.

Among both analytic samples, ~ 74% of subjects had 
little to no cotinine exposure, ~ 20% had cotinine levels 
equivalent to secondhand smoke exposure, and ~ 6% had 
cotinine exposure in the active smoking range (Table 1). 
Both active smokers and those exposed to secondhand 
smoke tended to be younger, had a lower household 
income (< $40,000), lower levels of education (≤ a high 
school education), higher total caloric intake, lower HEI 
levels, and had lower mean intakes of folate/folic acid 
(~ 1400  µg/day among non-smokers versus ~ 1300  µg/
day among smokers and those exposed to secondhand 
smoke).

Compared to those with high intakes of folate or high 
diet quality during pregnancy, mothers with lower folate 
intakes or lower diet quality during pregnancy were 
younger, had higher BMIs, were less likely to identify a 
non-Hispanic White, had lower household incomes, 
and were less educated (Supplemental Table S1). Moth-
ers were higher folate intakes had higher caloric intakes, 
whereas mothers with higher diet quality during preg-
nancy had lower caloric intakes.

Compared to offspring with no prenatal tobacco expo-
sure, offspring born to women with cotinine levels indi-
cating active smoking were significantly more likely to be 
born SGA (aOR: 6.43; 95% CI: 2.89, 14.35) (Table 2). Pre-
natal tobacco exposure is associated with a slight reduc-
tion in neonatal adiposity (adjusted beta for SHS: -0.44; 
95% CI: -1.30, 0.41; adjusted beta for active smoking: 
-0.97; 95% CI: -1.64, -0.30). Prenatal tobacco exposure 
was not associated with an increased risk for preterm 
delivery.
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Table 2 Adjusted odds ratios and mean/beta coefficients for maternal cotinine categories and selected birth outcomes, Healthy Start 
(2010–2014)

aORs adjusted odds ratios, aMean adjusted means, 95%CIs 95% confidence intervals
* All models adjusted for maternal age, education, race/ethnicity, maternal pre-pregnancy BMI, and infant sex
† Preterm/non-preterm births
‡ SGA/non-SGA births

aORs/aMeans for Selected Birth Outcomes *

Preterm Birth Small-for-Gestational Age 
Birth

Neonatal Adiposity

no/nō
† aOR (95%CI) no/nō aOR (95%CI) n Adj. Beta 

Coefficients (95% 
CIs)

Adj. Means (95% CIs)

Cotinine categories

 < 0.05 ng/mL (LOD, no exposure) 23/493 1.00 (Reference) 59/455 1.00 (Reference) 463 Reference 9.50 (8.91, 10.10)

 0.05-550 ng/mL (SHS) 4/139 0.45 (0.13, 1.58) 20/123 0.92 (0.46, 1.83) 132 -0.44 (-1.30, 0.41) 9.00 (8.24, 9.76)

 ≥ 550 ng/mL (Active Smoking) 3/39 1.29 (0.33, 5.10) 20/22 6.43 (2.89, 14.35) 35 -0.97 (-1.64, -0.30) 7.77 (6.48, 9.07)

 p for trend p = 0.93 p < 0.01 p = 0.01

Table 3 Adjusted odds ratios and mean/beta coefficients for maternal cotinine categories and selected birth outcomes by maternal 
dietary factors, Healthy Start (2010–2014)

aORs = adjusted odds ratios; aMean = adjusted means; 95%CIs = 95% confidence intervals

SGA = small-for-gestational age {based on sex, race/ethnic and parity specific growth curves (add citations here)
*  P-values for interaction generated by adding product terms between maternal cotinine and nutrient categories (continuous form) in separate models
a  All models adjusted for maternal age, education, race/ethnicity, maternal pre-pregnancy BMI, and infant sex

aORs/aMeans for Selected Birth Outcomes by Healthy Eating Index and Daily Folate Intake

Maternal Dietary Factors a Preterm Birth Small-for-Gestational 
Age Birth

Neonatal Adiposity

no/nō aOR (95%CI) no/nō aOR (95%CI) Adj. Beta 
coefficients 
(95% CIs)

Adj. Means (95% CIs)

Dietary Factors
Healthy Eating Index (HEI)
Low HEI (< 61)

   < 0.05 ng/mL (LOD, No Exposure) 9/177 1.00 Reference 26/159 1.00 Reference 167 Reference 9.64 (8.86, 10.43)

    ≥ 0.05 ng/mL (Any Smoking Exposure) 4/119 0.47 (0.12, 1.92) 29/94 1.33 (0.63, 2.81) 111 -1.03 (-2.05, -0.02) 8.69 (7.91, 9.46)

High HEI (≥ 61)

 < 0.05 ng/mL (LOD, No Exposure) 14/302 1.00 Reference 32/283 1.00 Reference 283 Reference 9.32 (8.27, 10.37)

 ≥ 0.05 ng/mL (Any Smoking Exposure) 2/47 0.67 (0.12, 3.79) 9/40 2.11 (0.81, 5.49) 44 -0.62 (-1.98, 0.74) 8.73 (7.26, 10.20)

 p for interaction term * p = 0.47 p = 0.94 p = 0.33

Total Folic Acid Supplementation & Dietary Folate Equivalents [1077 µg/day = 25th percentile]
 < 1077 µg/day

  < 0.05 ng/mL (LOD, No Exposure) 6/107 Reference 8/105 Reference 99 Reference 8.92 (7.85, 9.99)

  ≥ 0.05 ng/mL (Any Smoking Exposure) 2/62 0.32 (0.04, 2.42) 15/49 4.99 (1.55, 16.14) 57 -2.09 (-3.44, -0.74) 7.19 (6.04, 8.33)

 ≥ 1077 µg/day

 < 0.05 ng/mL (LOD, No Exposure) 17/381 Reference 51/347 Reference 361 Reference 9.71 (8.98, 10.43)

 ≥ 0.05 ng/mL (Any Smoking Exposure) 5/115 0.94 (0.28, 3.14) 25/95 1.15 (0.57, 2.31) 109 -0.17 (-1.13, 0.79) 9.43 (8.57, 10.29)

 p for interaction term * p = 0.63 p = 0.07 p = 0.07
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Our interaction results revealed that maternal folate 
intake may modify of the association between prenatal 
tobacco exposure with neonatal adiposity (p for interac-
tion = 0.07) and SGA (p for interaction = 0.07) (Table 3). 
For instance, among those with lower folate intake (<  25th 
percentile [< 1077  µg/day]), fetal exposure to tobacco 
was associated with lower neonatal adiposity (adjusted 
beta -2.09%; 95% CI: -3.44, -0.74) and increased SGA 
risk (adjusted odds ratio: 4.99; 95%CI: 1.55, 16.14). Con-
versely, among those with higher folate intake, there was 
no difference in neonatal adiposity (adjusted beta -0.17%; 
95% CI: -1.13, 0.79) or SGA risk (adjusted odds ratio 1.15; 
95%CI: 0.57, 2.31). A similar, albeit non-significant, pat-
tern of interaction between prenatal tobacco exposure 
and folate on neonatal adiposity was noted across the 
 10th and  5th percentiles, whereas there was little evidence 
for interaction across the other folate cut-points (Supple-
mental Table S2). We found no evidence of effect modi-
fication by HEI or folate on the associations between 
prenatal tobacco exposure and preterm births (Table 3). 
Our results were similar following adjustment for prena-
tal daily total caloric intake (data not shown).

Discussion
Our findings suggest that dietary folate minimizes the 
risk of tobacco-induced fetal growth restriction. By con-
trast, overall diet quality during pregnancy did not mod-
ify the risk for adverse birth outcomes. Given that many 
pregnant women are unable to successfully quit smoking 
[28] or are involuntarily exposed to SHS [29], our find-
ings may have important public health implications for 
mitigating risks associated with this exposure.

Our interaction findings may provide insights about 
the mechanisms underlying the associations between 
prenatal tobacco exposure and systematic growth restric-
tion. One key pathway may involve maternal and fetal 
oxidative stress. Tobacco is known to increase markers 
of oxidative stress in the placenta via specific epigenomic 
modulations in key metabolic pathways. [30] Conversely, 
folate exhibits antioxidant [31] and anti-inflammatory 
properties [32]which may independently improve fetal 
growth [31].

A more novel mechanistic pathway may involve 
tobacco-induced disruption of the homocysteine-
methionine cycle of the fetus, [33] which is associated 
with deficiencies in circulating folate. Tobacco use during 
pregnancy is known to increase maternal homocysteine 
[34], which is associated with impaired uteroplacental 
blood flow and fetal growth restriction. [35] These effects 
may be offset by maintaining adequate dietary folate 
intake. [36] This hypothesis is supported by the work of 
Bakker and colleagues, [37] who reported that the combi-
nation of prenatal tobacco exposure and higher maternal 

homocysteine concentrations is associated with lower 
birth weight, but not preterm delivery.

Our interaction findings may have the potential for 
a large and immediate public health impact. Pregnant 
women have a heightened interest in dietary information 
[38] and are particularly receptive to dietary counseling 
during prenatal care. [39] Pregnant women are already 
encouraged to consume adequate folate to reduce the 
risk for neural tube defects, [10] and most do. [24] Over-
all, our findings support the positive impacts of mater-
nal folate intakes during pregnancy on improving fetal 
growth.

Contrary to previous studies [40, 41], we found no evi-
dence that overall diet quality mitigated the risk of prena-
tal tobacco exposure on the adverse birth outcomes. [40, 
41]There are several factors that could explain this dis-
crepancy. First, diet quality was captured via a Mediter-
ranean diet score in previous studies [40, 41], whereas we 
utilized the Healthy Eating Index. Second, our study pop-
ulation had a relatively high diet quality as compared to 
the national population (median HEI in our study popu-
lation was 61, whereas data from the National Health and 
Nutrition Examination Survey reports a median HEI of 
52 [42]. Finally, our interaction findings with folate intake 
provides points to specific mechanisms (e.g. homocyst-
eine pathways) that may not be reflected in measures of 
overall diet quality.

One limitation of our approach is the one-time meas-
urement of cotinine. This prohibited our ability to exam-
ine trimester-specific effects, which have been noted in 
previous studies. [43] Additionally, since cotinine has a 
relatively short half-life [44], our one-time assessment 
may not be an accurate representation of tobacco expo-
sure throughout pregnancy. [44] Our categorization of 
cotinine (< / > 550  mg/mL) is a highly sensitive but less 
specific cut-point for distinguishing active smokers from 
passive smokers. This may have resulted in some expo-
sure misclassification. We speculate that the exposure 
misclassification would nondifferential with respect to 
the outcome, thus our effect estimates would be biased 
towards the null.

While many maternal-infant factors were controlled 
for in our analyses, residual confounding cannot be ruled 
out. Additionally, the small number of offspring born 
preterm or SGA births may have hindered our ability to 
detect an interaction between tobacco and diet. Lastly, 
our ability to generalize findings to other populations is 
limited, as mothers in our cohort may have had higher 
education levels, higher diet quality during pregnancy, 
and lower BMI levels than the general population.

Some of the novel aspects of the study include our abil-
ity to limit information bias. First, we utilized air displace-
ment plethysmography, which has been shown to be a 
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convenient, reliable, and valid method for measuring neo-
natal body composition. [20] With respect to nutrition, 
maternal folate intake was determined by both dietary 
recalls and self-reported supplement use, which provides 
a more complete picture of folate consumed during preg-
nancy than relying on dietary recall alone. Additionally, 
our use of repeated dietary recalls may have minimized 
recall bias [25] by giving participants more than one 
opportunity to report previously forgotten food items and 
estimate portion sizes. [45] Yet, there is still some poten-
tial for measurement error, since most of the women in 
our study completed only two dietary recalls, and may 
have misrepresented or completely omitted the amounts 
of certain foods/beverages consumed. [46, 25, 22, 47].

Conclusions
Despite the widely communicated risks of smoking dur-
ing pregnancy, many pregnant women smoke or are 
involuntarily exposed to SHS. [48] This is concerning, 
given the well-documented associations between prena-
tal tobacco exposure on systematic growth restriction of 
the fetus. There is a need to identify modifiable factors, 
such as folate intake during pregnancy (increased via diet 
or folic acid supplementation), that may protect the fetus 
against these environmental insults. Our results sug-
gest that higher levels of folate intake during pregnancy 
(≥ 1077 µg/day) may limit the effects of prenatal tobacco 
exposure on systematic growth restriction. Our find-
ings point to increasing overall folate intake as a poten-
tial mitigation strategy among pregnant women who are 
unable to avoid SHS or quit smoking during pregnancy.
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